

Product Information & Manual

Information of other products is available at: <u>www.leadgenebio.com</u>

Cholesterol oxidase (CO)

Cat no. LDG0025RG

Product Overview

Specification

Appearance	Yellow amorphous powder, lyophilized
Activity	40 U/mg or more

Properties

Stability	Stable at –20°C for at least one year
Molecular weight	58.9 kDa
Isoelectric point	8.52

Assay

1. Assay principle

Cholesterol + O_2 Cholesterol oxidase Cholest-4-en-3one + H_2O_2 $2H_2O_2$ + 4-Aminoantipyrin + Phenol Peroxidase

Quinoneimine dye + $4H_2O$

The appearance of quinoneimine dye formed when coupled with 4-aminoantipyrine, and phenol is measured at 500 nm by spectrophotometry.

2. Unit definition

One unit causes the formation of one micromole of

hydrogen peroxide (half a micromole of quinoneimine dye) per minute under the conditions described below.

3. Reagents

A. K-phosphate	0.1 M	
buffer, pH 7.0		
B. Cholesterol	Mix 500 mg of cholesterol	
solution	and 5 mL of Triton X-100 on	
	a hot plate or in a water bath	
	with stirring until	
	cholesterol dissolves. Add	
	90 mL of distilled water to	
	the mixture by slowly	
	pouring. Stir and allow to	
	boil for 30 to 60 seconds.	
	The solution will become	
	cloudy. Cool down with	
	gentle agitation until the	
	solution turns clear. Add 4 g	
	of sodium azide and	
	dissolve it to make a final	
	concentration of 4%. Fill up	
	the solution to 100 mL with	
	distilled water.	
C. 4-AA solution	1.76% (1.76 g 4-	
	aminoantipyrine in 100 mL	
	of H ₂ O)	
D. Phenol solution	6.0% (6.0 g phenol in 100	
	mL of H ₂ O)	
E. POD solution	Horseradish	
	peroxidase:15,000	
	purpurogallin units in 100	
	mL of buffer (A)	
F. Enzyme diluent	20 mM K-phosphate buffer,	
	pH 7.0 containing 0.2% BSA	

4. Procedure

(1) Prepare the following <u>working solution</u> immediately before use and equilibrate in a brownish bottle at 37°C for approximately 3 minutes (for 4 reactions).

Working solution

0.1 M K-phosphate buffer, pH 7.0 (Reagent A)	5.1 mL
Cholesterol solution (Reagent B)	0.4 mL
4- AA solution (Reagent C)	0.1 mL
POD solution (Reagent E)	0.2 mL
Total	5.8 mL

(2) Pipette 1.45 mL of working solution into a tube.

- (3) Add 0.05 mL of Phenol solution (Reagent D), mix by gentle inversion, and keep at 37°C for another 2 minutes.
- (4) Add 0.05 mL of the enzyme solution and mix by gentle inversion.

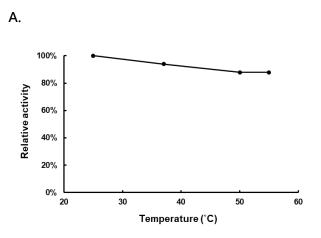
Concentration in a reaction	
K-phosphate buffer	87 mM
Cholesterol	0.89 mM
4-AA	1.4 mM
Phenol	21 mM
Triton X-100	0.34%
Sodium cholate	64 mM
BSA	33 μg/mL
POD	5 U/mL

(5) Pipette 1 mL of the mixture into a cuvette (d=1.0 cm).

(6) Record the increase in optical density at 500 nm against water for 1 to 5 minutes in a spectrophotometer at room temperature and calculate the Δ OD per minute from the initial linear portion of the curve (Δ OD test). At the same time, measure the blank rate (Δ OD blank) by using the same method as the test except that the enzyme diluent is added instead of enzyme solution.

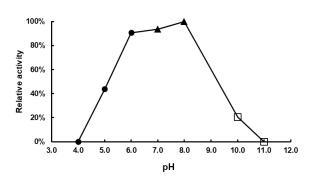
* Dilute the enzyme in ice-cold enzyme diluent (**Reagent E**) to **0.1–0.3 U/mL** and store on ice.

(7) Activity can be calculated by using the following formula:

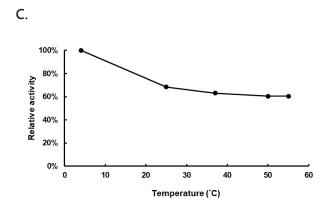

Volume activity (U/mL) =

 $\Delta OD/min (\Delta OD test-\Delta OD blank) \times Vt \times df$

13.78 ×1/2 × 1.0 × Vs	
= $\Delta OD/min \times 4.499 \times df$	
Weight activity (U/mg) = $(U/mL) \times 1/C$	
Vt: Total volume (1.55 mL)	
Vs: Sample volume (0.05 mL)	
13.78: Millimolar extinction coefficient of NADH at	
340 nm (cẩ/micromole)	


C: Enzyme concentration in dissolution (mg/mL)

The effect of different conditions on Cholesterol oxidase


Figure A. Temperature activity of Cholesterol oxidase. The enzyme reactions in 0.1 M Potassium phosphate buffer, pH 7.0, were carried out under different temperatures.

Β.

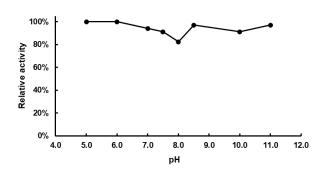


Figure B. pH activity of Cholesterol oxidase. The buffer conditions with various pH values were used in the reaction at 37°C. pH 4.0-6.0, 0.1 M Sodium citrate buffer; pH 7.0-8.0, 0.1 M Potassium phosphate buffer; pH 10.0-11.0, 0.1 M Carbonate-bicarbonate buffer.

Figure C. Thermal stability of Cholesterol oxidase. The enzyme powder was reconstituted by double-distilled water and treated with different temperatures for 15 minutes. Final concentration: 4.3 U/mL

D.

Figure D. pH stability of Cholesterol oxidase. The enzyme powder was reconstituted by double-distilled water and treated with different pH buffer condition for 20 hours. pH 4.0-6.0, 0.1 M Sodium citrate buffer; pH 7.0-8.0, 0.1 M Potassium phosphate buffer; pH 8.5, 0.1 M Tris-HCl buffer; pH 10.0-11.0, 0.1 M Carbonate-bicarbonate buffer.

Disclaimer

For Research Use or Further Manufacturing Only.

3